On Leray's structure theorem

Werner Varnhorn

Institute of Mathematics, Kassel University, Germany. varnhorn@mathematik.uni-kassel.de

Abstract

Let $\Omega \subseteq \mathbb{R}^3$ be a bounded domain with $\partial \Omega \in C^{\infty}$, and let $0 < T \leq \infty$. In $[0,T) \times \Omega$ we consider a general weak solution of the Navier-Stokes equations

$$u_t - \Delta u + u \cdot \nabla u + \nabla p = f,$$
 $\nabla \cdot u = 0,$ $u|_{\partial \Omega} = 0,$ $u|_{t=0} = u_0,$

where $u_0 \in W_{0,\sigma}^{1,2}(\Omega)$ and $f = \operatorname{div} F$, $F \in C_0^{\infty}([0,T); C^{\infty}(\overline{\Omega}))$, are given data. Our main result concerns Leray's structure theorem, see [2, p. 244]. In particular, for the special case F = 0, $T = \infty$, and u satisfying the strong energy inequality

$$\frac{1}{2}||u(t)||_2^2 + \int_{t_0}^t ||\nabla u||_2^2 d\tau \le \frac{1}{2}||u(t_0)||_2^2$$

for almost all $t_0 \in [0,T)$ and all $t \in [t_0,T)$, it is known [1, pp. 57] that there exists an open local in time regularity region $R \subseteq (0,T)$ such that $u \in C^{\infty}(R; C^{\infty}(\overline{\Omega}))$. We extend this result to several directions: Instead of F = 0, $T = \infty$ we allow $F \neq 0$, $0 < T \leq \infty$ as above, and we admit a general weak solution u in $[0,T) \times \Omega$ in the usual sense, without assuming the strong energy inequality.

References

- [1] G. P. Galdi, An Introduction to the Navier-Stokes Initial-Boundary Value Problem, Birkhäuser Verlag 2000.
- [2] J. Leray, Sur le Mouvement d'un Liquide Visqueux Emplissant l'Espace, Acta Math. 63 (1934), 103.