A necessary condition for the vanishing singularity in a suitable weak solution of the MHD equations

Jiří Neustupa

 $Institute\ of\ Mathematics,\ Czech\ Academy\ of\ Sciences,\ Czech\ Republic.$ neustupa@math.cas.cz

Abstract

We explain what we mean by the vanishing singularity. Then we show that if (\mathbf{x}_0, T) is a vanishing singularity in a suitable weak solution (\mathbf{u}, \mathbf{b}) of the MHD equations in a 3D domain Ω , where \mathbf{u} is the velocity and \mathbf{b} is the magnetic field, then

$$\lim_{t \to T-} \left(\| \mathbf{u}(\,.\,,t) \|_{\xi;\, B_R(\mathbf{x}_0)} + \| \mathbf{b}(\,.\,,t) \|_{\xi;\, B_R(\mathbf{x}_0)} \right) (T-t)^{\frac{\xi-3}{2\xi}} \ = \ \infty$$

for any $\xi \in [3, 6]$ and R > 0.

Keywords: MHD equations, weak solution, regularity

References

[1] J.Neustupa, M.Yang, A Necessary Condition for a Vanishing Singularity in a Suitable Weak Solution to the Navier–Stokes Equations, Preprint 2025.