Continuum theories for liquid crystals and their applications

Apala Majumdar

Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH apala.majumdar@strath.ac.uk

Abstract

crystals are classical examples of partially ordered materials that combine fluidity with the directionality and ordering of solids. Liquid crystals are anisotropic materials, with direction-dependent physical, optical and rheological properties, making them the working material of choice for a range of opto-electronic devices, e.g., liquid crystal displays, photonics, sensors, photovoltaics etc. In this talk, we review the mathematical theories for three canonical liquid crystal phases: nematic liquid crystals, smectic liquid crystals and cholesteric liquid crystals. We focus on Landau-de Gennes type theories for these phases and describe the essential mathematical frameworks - the liquid crystal order parameters, the free energies, the governing systems of partial differential equations and their solution landscapes. We conclude with some case studies that illustrate the applications of these mathematical frameworks to prototype devices and real-life experiments. All collaborations will be acknowledged throughout the talk.

Keywords: liquid crystals, Landau-de Gennes theory, continuum mechanics, non-linear partial differential equations, variational methods etc.

References

[1] Baoming Shi, Yucen Han, Chengdi Ma, Apala Majumdar, Lei Zhang, 2025, A Modified Landau-de Gennes Theory for Smectic Liquid Crystals: Phase Transitions and Structural Transitions, accepted by SIAM J. Appl. Math.

- [2] Yucen Han, James Dalby, Apala Majumdar, Benjamin M. G. D. Carter, Thomas Machon 2022, Uniaxial versus biaxial pathways in one-dimensional cholesteric liquid crystals, Physical Review Research, L032018.
- [3] Y. Han, A. Majumdar and L. Zhang 2020, A Reduced Study for Nematic Equilibria on Two-Dimensional Polygons, SIAM Journal of Applied Mathematics, 80, 1678 1703.