Automated design and simulation workflow for an axial blood pump

Anna Lancmanová

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Prague 1, Czech Republic

Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Technical Mathematics, Karlovo náměstí 13, 121 35 Prague 2, Czech Republic CFD support, s.r.o., Sokolovská 270/201, 190 00 Prague 9, Czech Republic lancmanova@math.cas.cz

Abstract

This talk will present a collaborative effort to develop an automated and extensible workflow for the design and evaluation of an axial blood pumps. The core of the framework is a fully parametric CAD model, which is directly linked to numerical simulations, optimalization and automated report generation. Both the fully parametric CAD model and surrounding Framework was developed in-house.

The workflow is designed to enable systematic performance assessment and shape refinement, while being flexible and extensible. The long term goal is to establish a reproducible and shareable benchmark that can support future extensions, including for example the integration of advanced metrics such as blood damage prediction and thrombus formation.

Keywords: Parametric CAD design, geometrical constructions, ventricular assist device, axial blood pump, incompressible Navier-Stokes, Open-FOAM, optimalization, shape optimalization, automated design workflow, biomedical