Regularity of very weak time-periodic Poiseuille-type solutions

Rita Juodagalvytė, Kristina Kaulakytė, Konstantinas Pileckas
Faculty of Mathematics and Informatics, Vilnius University, Lithuania
rita.juodagalvyte@mif.vu.lt, kristina.kaulakyte@mif.vu.lt, konstantinas.pileckas@mif.vu.lt

Abstract

We present our results concerning the time-periodic very weak solutions of the heat equation with a side condition of the prescribed flux

$$F(t) = \int_{\sigma} U(x,t) dx$$

(see [3]). The regularity of very weak time-periodic Poiseuille-type solutions when $F \in W^{\beta,2}(-\pi,\pi)$, $0 \le \beta \le 1$, is investigated. Specifically, we provide an example of a given flux function F that belongs to $L^2(-\pi,\pi)$ but $F \notin W^{\beta,2}(-\pi,\pi)$ for $0 < \beta < 1$. The very weak solution corresponding to such F, has the regularity as stated in the definition (see [1],[2]) and it is not better. Furthermore, we discuss results that suggest a correlation between the improvement of solutions regularity and the increase in regularity of the given function F.

References

- [1] K. Pileckas, R. Ciegis, Existence of nonstationary Poiseuille type solutions under minimal regularity assumptions, Z. Angew. Math. Phys., 71, 192, 2020 https://doi.org/10.1007/s00033-020-01422-5
- [2] K. Kaulakytė, N. Kozulinas and K. Pileckas, Time-periodic Poiseuille-type solution with minimally regular flow rate, Nonlinear analysis: modelling and control, 26, 5, 947-968, 2021 https://doi.org/10.15388/namc.2021.26.24502
- [3] R. Juodagalvytė, K. Kaulakytė, K. Pileckas, Regularity of Very Weak Time-Periodic Poiseuille-Type Solutions (submitted)