Stokes resolvent with traction boundary conditions

Paul Deuring

Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville (LMPA), Université du Littoral Côte d'Opale, France. deuring@univ-littoral.fr

Abstract

Let Ω denote an open, bounded set in \mathbb{R}^3 with connected C^2 -boundary $\partial\Omega$, and put $\overline{\Omega}^c := \mathbb{R}^3\backslash\overline{\Omega}$ (exterior domain). Let $\lambda \in \mathbb{C}\backslash(-\infty,0]$. Consider the Stokes resolvent system

$$-\Delta u + \lambda u + \nabla \pi = F, \quad \text{div } u = 0 \quad \text{in } \overline{\Omega}^c, \tag{1}$$

under traction boundary conditions

$$\sum_{k=1}^{3} (\partial_{j} u_{k} + \partial_{k} u_{j} - \delta_{jk} \pi) n_{k}^{(\Omega)} = B_{j} \quad \text{on } \partial\Omega \quad \text{for } 1 \leq j \leq 3,$$
 (2)

where $n^{(\Omega)}$ denotes the outward unit normal to Ω . Let $p \in (1, \infty)$. By $D^{1,p}(\overline{\Omega}^c)$ we denote the space of all functions $\sigma \in W^{1,1}_{loc}(\overline{\Omega}^c)$ such that $\nabla \sigma \in L^p(\overline{\Omega}^c)^3$. Let $\vartheta \in [0, \pi)$. We are interested in solutions $(u, \pi) \in W^{2,p}(\overline{\Omega}^c)^3 \times D^{1,p}(\overline{\Omega}^c)$ of (1), (2), as well as in the estimate

$$|\lambda| \|u\|_p + \|u\|_{2,p} + \|\nabla \pi\|_{1,p} \le \mathfrak{C} \|F\|_p$$
 (3)

for $F \in L^p(\overline{\Omega}^c)^3$ and $\lambda \in \mathbb{C}$ with $|\arg \lambda| \leq \vartheta$, $|\lambda| \geq \lambda_0$, where \mathfrak{C} and λ_0 are constants only depending on p, ϑ and Ω (estimate uniform with respect to λ with $|\arg \lambda| \leq \vartheta$, $|\lambda| \geq \lambda_0$). If inequality (3) is available, problem (1), (2) may be written as an equation in terms of an operator ("Stokes operator") generating an analytic semigroup in a suitable space. This equation, which does not involve the pressure, provides an access to the time-dependent Stokes system supplemented by boundary conditions (2).

Grubb [1] expressed a solution of (1), (2) in terms of a pseudodifferential operator on $\partial\Omega$, but did not make explicit any regularity property or estimate of this solution. Shibata, Shimizu [3], [4] and Shibata [2] addressed problem (1), (2) by reducing it to a boundary value problem in half-space in \mathbb{R}^3 . They obtained solutions in $W^{2,p}(\overline{\Omega}^c)^3 \times D^{1,p}(\overline{\Omega}^c)$ and proved (3).

Following suggestions by T. Hishida, we showed that problem (1), (2) admits two distinct solution classes in $W^{2,p}(\overline{\Omega}^c)^3 \times D^{1,p}(\overline{\Omega}^c)$, one consisting of functions (u,π) with $\int_{\partial\Omega} u \cdot n^{(\Omega)} do_x = 0$ (zero flux of the velocity through $\partial\Omega$), the other one characterized by the relation $\pi|B_R^c \in L^r(B_R^c)$ for some $r \in (1,\infty)$ and some R>0 with $\overline{\Omega} \subset B_R$ (L^r -integrability of the pressure near infinity). The second class exists only if p>3/2, and in the case $p\geq 3$, estimate (3) holds for solutions in this class only if div F=0 in the sense of distributions. A Stokes operator is associated with both this classes, in the case of the second under the assumption p>3/2, but without the restriction p<3.

There is a one-dimensional subspace of $W^{2,p}(\overline{\Omega}^c)^3 \times D^{1,p}(\overline{\Omega}^c)$ whose nonvanishing elements (u,π) satisfy (1) with F=0 and (2) with B=0, with u not being constant.

Keywords: Stokes resolvent, traction boundary conditions, Stokes operator.

References

- [1] G. Grubb, Nonhomogeneous Navier-Stokes problems in L_p Sobolev spaces over exterior and interior domains, In: J. G. Heywood, K. Masuda, R. Rautmann, V. A. Solonnikov (edts.). Theory of the Navier-Stokes Equation. Series on Advances in Mathematics for Applied Sciences, Vol. 47, 46-63. World Scientific, Singapore, 1998.
- [2] Y. Shibata, On the L_p - L_q decay estimate for the Stokes equations with free boundary conditions in an exterior domain, Asymptotic Analysis 107 (2018), 33-72.
- [3] Y. Shibata, S. Shimizu, On a resolvent estimate for the Stokes system with Neumann boundary condition, J. Diff. Equ. 16 (2003), 385-426.

[4] Shibata, Y., Shimizu, S.: Decay properties of the Stokes semigroup in exterior domains with Neumann boundary condition, J. Math. Soc. Japan **59** (2007), 1-34.